A fast, analytically based method to optimize local transmit efficiency for a transmit array.
نویسندگان
چکیده
PURPOSE To develop an analytically based algorithm for rapid optimization of the local radiofrequency magnetic (B1+) field intensity for a given radiofrequency power through a transmit array. The analytical nature of the method will yield insight to optimization requirements and provides a valuable reference for numerically based searches. METHODS With the knowledge of the B1+ field distribution generated by each single coil of the array, both the phases and the amplitudes of each coil current are optimized to maximize the magnitude of the B1+ field in a specific location of the body per unit of power transmitted through the array and, consequently, minimizing the whole body specific absorption rate for a given pulse sequence. RESULTS Simulations considering the human body show that the proposed method can reduce the whole-body specific absorption rate for a given B1+ magnitude at the location of interest by a factor of about 6.3 compared to the classic birdcage current configuration, and by a factor of 3.2 compared to phase-only shimming in a case with significant coupling between the elements of the array. CONCLUSION The proposed method can rapidly provide valuable information pertinent to the optimization of field distributions from transmit arrays.
منابع مشابه
Fast and Optimal Design of a K-band Transmit-receive Active Antenna Array
An active-antenna array with 18 transmit elements and 18 receive elements is designed and fabricated. This T/R array can work at two different frequencies (19.5 GHz and 21.5 GHz) with multiple levels of isolation between the transmit and receive channels. A hybrid element-level vector finite element and adaptive multilevel fast multipole method (ELVFEM/AMLFMA) is applied to simulation the perfo...
متن کاملFast Implementation of Transmit Beamforming for Colocated MIMO Radar
Multiple-input Multiple-output (MIMO) radars benefit from spatial and waveform diversities to improve the performance potential. Phased array radars transmit scaled versions of a single waveform thereby limiting the transmit degrees of freedom to one. However MIMO radars transmit diverse waveforms from different transmit array elements thereby increasing the degrees of freedom to form flexible ...
متن کاملAssessment of the Characteristics of MRI Coils in Terms of RF Non-Homogeneity Using Routine Spin Echo Sequences
Introduction: One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged...
متن کاملImpact of Transmit Antenna Array Geometry on Downlink Data Rates in MIMO Systems
For a cellular system with a fixed number of transmit antennas at each base station, we investigate how the data rate on the downlink varies as a function of the geometry of the transmit array and as a function of the linear precoding that precedes the transmit array. The maximum average data rate that can be reliably transmitted over the downlink channel (i.e. the ergodic capacity of the downl...
متن کاملComparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficiency metrics.
PURPOSE We compare the performance of eight parallel transmit (pTx) body arrays with up to 32 channels and a standard birdcage design. Excitation uniformity, local specific absorption rate (SAR), global SAR, and power metrics are analyzed in the torso at 3 T for radiofrequency (RF)-shimming and 2-spoke excitations. METHODS We used a fast cosimulation strategy for field calculation in the pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 71 1 شماره
صفحات -
تاریخ انتشار 2014